The “"Modeling”’
Environment




Degraded  Saturated Permeable The Parameter

Efficient Distributed
(PED) model (Tilahun
et al., 2013,2015) uses
a water-balance
saturation excess
framework.

Erosion is simulated
where runoffis
occurring.

Q=Aqr, +Azqr, +A3(qi +qp)
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Roads create an uncertain amount of runoff and sediment
supply and prevented the simple use of the PED model.
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Water-quality modeling seems to be prone to oversimplification since
(in order to develop realistic models) you must first assimilate a
considerable body of technical information dealing with theory,
mathematics, and computers.

However, there is a much larger picture for the modeling process...
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Water-Quality-Modeling Process:
Problem Specification; Getting Started

“ Problem Specification: the water-quality engineer must
- be provided with a clear delineation of the objectives of
the customer (individual, corporation, municipality,
regulatory agency).

Two information sources feed this phase:

Management objectives, options, constraints

(a) Process (b) Information

Physics, chemistry, biology of water body/drainage basin



Water-Quality-Modeling
Process- Model Selection

" Next step is to obtain a model (usually existing
software)...why:

-work already done

-widely used (legal, regulatory)
-credibility

Sometimes water-quality problem is not yet available
as a modeling process.

This necessitates theoretical development &
numerical development/validation

(a) Process (b) Information



Water-Quality-Modeling Process:
Theoretical Development

Requires variables, parameters, and associated

/ R continuity equations.

i /,,-
- E— ! ;/f./;;.;.,.,T---; ------------ neauredrel®b™ Continuity equations: mass and/or energy
9 /. "

Dhestsses Vomentum balances: for hydrodynamics

’ . Cost=3$
C Complexiy ~ Also requires decision on model complexity/cost

T tradeoffs

The trade-off between model reliability and complexity.

Strive to develop the simplest model that is consistent
with data and problem requirements (Ockham’s razor).




Numerical specification and
validation

Now equations must be implemented on the

1 ]
/ Cost = unlimited $

/ computer: algorithm design (data structure and
" e numerical solution techniques), coding in
i --------------- . ;7/{“:;'—'":;':';:'\' -------- neadred 22V computer language, debugging, testing, and
- 720l B B A documentation.

r
‘\\Cost=$+A$

__Cost=$ Testing (validation, confirmation)

Complexity Mass balances
FIGURE 18.2 . . (o .
The trade-off between model reliability and complexity. SI m pl Ifled SOI utions

Range of conditions
Graphical results
Benchmarking




Preliminary Application

This stage is useful for identifying data deficiencies and theoretical
gaps. It can also provide important context for designing the field and
laboratory studies required to fill the gaps.

Here we furthermore investigate which model parameters have the
greatest impact on model predictions with a model sensitivity analysis

(method of varying each parameters by a set percent and observing
how the predictions vary).
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FIGURE 18.3
Schematic diagram of the model calibration process.

Calibration: “Tuning” the model to fit a
data set. Fitting means to vary model
parameters to obtain an optimal
agreement between model calculations
and the data set.

E.g. calibrating on low flows (7Q10) during
summer for wastewater discharge.

Several types of information must be fed
into a model to systematically obtain a best
fit:
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Schematic diagram of the model calibration process.

Several types of information must be fed
into a model to systematically obtain a best
fit:

-Forcing functions and physical parameters:
Boundary conditions & loads
Initial conditions
Physics

-Calibration parameters: kinetics

Adjustments can be made by trail and error
or through automated techniques.



Confirmation and Robustness

At this point a calibrated model fits a single data set, now it must be confirmed.
-On a new data set (or several data sets)

-with new physical parameters
-and updated forcings reflecting new conditions

If it matches the new conditions (confirmation!), if not, discrepancies must be
investigated.... Recall “Oreskes et al 1994: all that can be concluded is that our

testing has not proved the model wrong”. The actual goal then is to establish
the model’s robustness (via a large number and diversity of confirming

observations)



Management Application

Many modeling studies result in remedial actions (wastewater
treatment plant construction/upgrade, aeration, dredging
implemented).

We can model the effectiveness of these actions by modifying the
parameters and forcing functions to view effects on state variables.



Post-Audit

After remedial action has been implemented, a check can be made to
view the accuracy of predictions.

Differences between predictions and resulting water quality have often

occurred. These cases can be useful for discovering missing
mechanisms and information for the improvement of the robustness of

the frameworks.
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Model Sensitivity: Parameter
Perturbation & 1st Order Analysis

One way to get a general understanding of the behavior of a water-
guality model is to conduct a sensitivity analysis.

Common implementations are:
-Simple parameter perturbation

-First-order sensitivity analysis
-Monte Carlo approaches



Model Sensitivity: Parameter
Perturbation

For a simple mass-balance equation for a well-mixed lake, we illustrate both
(parameter perturbation, first-order sensitivity analysis).

dc
VE =Q ¢ip —Qc —kVc I .

which at steady state is solved for as:

Q 0 0 k- Ak k+ Ak
— C: P
Q + k V n (a) Parameter perturbations

Recognize that c is a function of the parameters and forcing functions: i.e.
c = f(0Q,k,V,c;,). Hence once way to visualize the dependence of the
solution on one of the parameters is to plot c versus the parameter (e.g. k)

C



Model Sensitivity: Parameter
Perturbation

Parameter perturbation consists of varying each of the model
parameters (e.g. raised or lowered a fixed percent) while holding all

other terms constant.

The corresponding variations of the state variables reflect the
sensitivity of the solution of the varied parameter. ¢

0 k- Ak k+ Ak k

c(k + Ak) — c(k — Ak) 0
— =

(a) Parameter perturbations

Ac



First-order Sensitivity Analysis

An alternative technique that yields similar information
is based on a first-order sensitivity analysis. This
approach uses the derivative of the function with
respect to the parameter as an estimate of the
sensitivity. One way is to employ first-order Taylor-series
expansions of the model around the value of the
parameter. E.g.

dc(k “
c(k + Ak) = c(k) + LAk |
ok i Y .
dc(k o
C(k — Ak) — C(k) — LAk 0 k- Ak k+dk

ak \ZAk/

(b) First-order analysis



First-order Sensitivity Analysis

These equations can be subtracted from each other

dc(k
c(k + Ak) = (k) +a—§?()Ak ‘)
dc =
C(k—Ak) =C(k)——)Ak m/“‘“;.
ok e
To yield:
c(k + Ak) —c(k — Ak) 0dc(k) Taw”
AC — 2 e ak (b) First-order analysis

(the sign indicates variation of the prediction, see graph’s negative
slope)



Condition numbers

A refinement on these previous sensitivity analyses is to express the

results as condition numbers: For 1%t order (Ac = ag(k) Ak) , dividing
both sides by c and multiplying right hand side by k/ﬁ.

Ac oN Ak
c Kk
where CN, is the condition number for the parameter k. ..~
CN k aC c+Ac;
k_cak | (b) First-ord lysi
For perturbation analysis the discrete form would be used: y
k Ac
CNk —_

c Ak



EXAMPLE 18.1. SENSITIVITY ANALYSIS. As depicted below, two chemical
species react within a lake. Mass balances for the two reactants can be written as

Loading / Outflow

Reaction

SeRing FIGURE E18.1
d(’|
V-ﬁ" = Qcin — Qcy — kppVey + ky Voo
dcs
V at = —QC2 + kipVe, — ko Ver — viAsca

where V = volume of lake = 50,000 m?
O = inflow = outflow = 50,000 m’ d"!
A, = surface area of lake sediments = 16,667 m?
ki> = first-order conversion rate of ¢; to ¢, = 1to4d™!
k,, = first-order conversion rate of ¢, to ¢; = 0.5t0 0.7 d™!
v, = settling velocity of ¢; = 0to 1 md™!

The ranges for the parameters connote literature values. The term c;, represents the con-
centration of the inflowing stream (mg L™"), which during the period of study has a mean
value of approximately 10 mg L~!. Use this information to estimate the sensitivity of the
model to the three parameters k>, k>, and v;. Employ first-order sensitivity analysis and
express your results as a table of condition numbers.



Model Sensitivity: Parameter
Perturbation & 1st Order Analysis

One problem with the previous example is that the uncertainty of the
parameter estimates were not considered. Some parameters are
known more definitively than others. A solution is to propagate the

range for the parameters through either the perturbation or the first-
order approach.

. . A Ak .
This can be done by using 76 = CN;,, - to propagate the relative error

in each parameter into the resulting error in the prediction.



EXAMPLE 18.2. UNCERTAINTY ANALYSIS. For the case from Example 18.1,

determine the expected uncertainties of the concentrations due to the uncertainties of the
parameters.



Monte Carlo Analysis

In MCA, the distribution of the parameters is characterized rather than
given a prescribed range.

0 k- Ak k+ Ak k

\2 Ak/
(a) Parameter perturbations

g ———— S— e ————————— -

| 0 k

| FIGURE 18.4

; Graphical depictions

. | | | of three methods
0 k - Ak k+Ak g ' _ for assessing model
s o A (c) Monte Carlo analysis sensitivity.

(b) First-order analysis



Monte Carlo Analysis

Here are a few ideal probability distributions that
are commonly used to describe parameter
variability in water-quality modeling.

Uniform distribution assumes equal probability of
occurrence between each bound. Normal and
triangular demonstrate the most likely value at the
center.

These centered distributions can also be off-
centered or “skewed”.

f(x) el

(1) Uniform

f(x) S
05 T
X
0 t t ] 0
0 1 2 3 0
(2) Normal
fx) F(x) |
.
|
i
0 t L D! t t
0 L 2 3 0 1 2 3
(3) Triangular
(a) (D)
FIGURE 18.5

(a) Probability density and (&) cumulative distribution functions for three distributions commonly
used to characterize uncertainty of water-quality modeling parameters: (1) uniform, (2) normal,
and (3) triangular distributions.



Monte Carlo Analysis

The cumulative distribution function (c.d.f.)
represents the integral of the p.d.f,, —

Uniform
random number

X
F(x) = j f(x) dx -_Qigt-e_rit)m | I

This integral specifies the probability that the
parameter will be less than x. The two distributions

are related inversely by differentiation. N
dF (x)
fx) = = a
dx |
i.e. the frequency of occurrence is equal to the rate
of change of the c.d.f. with respect to the rate of
change of the parameter.

X

These distributions for parameters are used to I GURE 18.6
Simu Iate d |Str| but|0ns Of conce nt ratlon . Graphical depiction of how the c.d.f. is used in conjunction with random

numbers to generate values of model coefiients in Monte Carlo
simulation.



EXAMPLE 18.3. MONTE CARLO ANALYSIS. Forthe case from Example 18.1,
determine the expected uncertainties of the concentrations due to the uncertainty of the
parameter k;;. Assume that the parameter follows the triangular distribution

f(x) = 0.4444(x — 1) 1l = x<25
f(x) = —0.4444(x — 4) 25 =x<4
These can be integrated to develop equations for the c.d.f.,
F(x) = 0.2222(x — 1)? ] = x =25
F(x) = —0.4444(0.5x* — 4x +5.75) 25 =x=4

Both functions are displayed below:

0.8 1y

0.6 + 0.8

fix) 0.4-: F(x) |




Assessing Model Performance

(a)

Previously we describe the aim of R T N
calibration as obtaining the best fit. R E
Assessing this best fit can be subjective >
and objective. =

.
.
xX*
.
.

Subjective assessment is based on
visual comparison of simulation with
data.

Objective assessment involves some
guantitative measure of the quality of
fit (usually a measure of error).




Assessing Model Performance

There are several measures that can be developed
to assess fit. The follow is a focus on minimizing
the sum of squares of the residuals:

n

Sy = z(cp,i — Cm,i)2

i=1
where ¢, ; = the ith model prediction of
concentration and c,, ; = ith measured
concentration.

£ (d)

FIGURE 18.7

One can use trial-and-error or numerical o el eyl i e
optimization methods. Each has value.



EXAMPLE 184. MODEL CALIBRATION. For the same system studied in Exam-
ple 18.1, the following data were collected during a 5-d sampling survey:

{ Cy Cy Cr
(d) (mgL™") (mgL') (mgL™)
0.0 7.0 4.0 11.0
0.5 13 3.5 10.8
1.0 6.6 4.7 11.3
1.5 8.9 40 129
2.0 6.6 50 11.7
2.5 6.2 3.1 9.3
3.0 3.3 4.3 7.6
3.5 4.7 2.2 6.8
4.0 3.75 3.9 7.7
4.5 6.1 1.3 7.4
5.0 6.0 4.0 10.0

Mean 6.03 3.64 9.67

The concentration of the inflowing stream ¢, during the period of study can be repre-
sented by the sine function,

Cin = 10 + Ssin (Ef)

2
In addition in situ experiments were performed at two times during the study to estimate
k> directly. These yielded estimates of 1.05d~" and 1.55 d™! for that parameter. Use this

information (and any other techniques at your disposal) to estimate the three parameters
;C|2, k2|, and Vg,



Chlorophyll a (ug L)

Segmentation and Model
Resolution

J FMAMUJ JASOND

Segmentation is the process of dividing space and
matter into increments. e.g. into volumes with mass-
balance equations, each with different chemical and
biological forms.

There is also a temporal aspect to
segmentation which can increase in
temporal focus by using shorter “finite
FIGURE 18.8 . ) .
Plot of chiorophyll aconcentra- - PEF10AS” Or time steps for the mass-

tion (mwg L") versus time. (a)

Eepcticiflaligger, balance computation. See graph showing
he underlying seasonal cycle 1 H H

E;:,a\,y e E%’ ot vee yariability and scale.

the seasonal cycle (wavy

line) along with the underlying
long-term trend (straight line).



Chlorophyll a (ug L)

—
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Segmentation and Model
Resolution

J FMAMGJ JASOND

The degree to which space, time, and matter are
segmented is called model resolution. Analogous to
photography, where the lens is adjusted to bring
different parts of the field of view into focus.

At times the foreground is important, other times
distant details are of interest.

FIGURE 18.8

Plot of chlorophyll a concentra-
tion (mwg L") versus time. (a)
Depiction of the long-term
trend (straight line) along with
the underlying seasonal cycle
(wavy line); (b) depiction of
the seasonal cycle (wavy
line) along with the underlying
long-term trend (straight line).



Segmentation and Model

Resolution

Physical characteristics of the system can

dictate the required level of
segmentation.

The issue of concern for a planner may be

such that spatial and temporal

aggregation results in negligible loss of

relevant planning information.

Other times (e.g. bacterial contamination

of beaches, might require finer scale
approach).

Horizontal space scale (km)
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FIGURE 18.9
Approximate time and space scales of water-quality problems.
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