
Streeter-Phelps: 
Distributed Sources



Parameterization of Distributed 
Sources

A steady-state mass balance for a distributed source could be written for a 
plug-flow with a uniform hydrology and geometry,

0 = −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝑘𝑘𝑑𝑑 + 𝑆𝑆𝑑𝑑

where Sd = rate of the distributed source (g m-3 d-1) and t = travel time for a 
plug-flow system. If c = 0  at t = 0, then: 

𝑑𝑑 =
𝑆𝑆𝑑𝑑
𝑘𝑘

(1 − 𝑒𝑒−𝑘𝑘𝑘𝑘)





Parameterization of Distributed 
Sources

The best way to parameterize the inputs would be per 
length of stream, 𝑆𝑆𝑑𝑑" (𝑀𝑀𝐿𝐿−1𝑇𝑇−1). Such rate is converted to 
the proper volumetric units by: 

𝑆𝑆𝑑𝑑 = 𝑆𝑆𝑑𝑑"
𝐿𝐿
𝑉𝑉

=
𝑆𝑆𝑑𝑑"

𝐴𝐴𝑐𝑐
where  L = total length

V = volume
Ac = cross-sectional area of the reach being loaded



Parameterization of Distributed 
Sources

The best way to parameterize such inputs would be as a flux 𝑆𝑆𝑑𝑑′ (𝑀𝑀𝐿𝐿−2𝑇𝑇−1). 
This mass balance would be :

𝑆𝑆𝑑𝑑 = 𝑆𝑆𝑑𝑑′
𝐴𝐴𝑠𝑠
𝑉𝑉

=
𝑆𝑆𝑑𝑑′

𝐻𝐻
where  H = stream depth.



No-Flow Sources 



No-Flow Sources (BOD)

For BOD introduced to a system without adding significant flow are 
interactions with porous media. The mass balance would be written as:

0 = −
𝑑𝑑𝐿𝐿
𝑑𝑑𝑑𝑑

− 𝑘𝑘𝑟𝑟𝐿𝐿 + 𝑆𝑆𝐿𝐿
where SL = rate of the BOD distributed source (g m-3 d-1). 



(BOD)



(BOD)

The solution if L = 0 at t = 0, would be: 

𝐿𝐿 =
𝑆𝑆𝐿𝐿
𝑘𝑘𝑟𝑟

(1 − 𝑒𝑒−𝑘𝑘𝑟𝑟𝑘𝑘)

Thus the BOD increases in a step-response fashion and asymptotically 
approaches a steady-state level �𝐿𝐿, where the BOD gain is balanced by 
removal:

�𝐿𝐿 =
𝑆𝑆𝐿𝐿
𝑘𝑘𝑟𝑟

A mass balance for oxygen deficit can be written as:

0 = −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝑘𝑘𝑎𝑎𝑑𝑑 +
𝑘𝑘𝑑𝑑
𝑘𝑘𝑟𝑟
𝑆𝑆𝐿𝐿(1 − 𝑒𝑒−𝑘𝑘𝑟𝑟𝑘𝑘)



(BOD)

Thus the BOD would act as a forcing function contribution to the deficit. For 
the case D= 0 at t=0, this balance 

0 = −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝑘𝑘𝑎𝑎𝑑𝑑 +
𝑘𝑘𝑑𝑑
𝑘𝑘𝑟𝑟
𝑆𝑆𝐿𝐿(1 − 𝑒𝑒−𝑘𝑘𝑟𝑟𝑘𝑘)

can be solved for:

𝑑𝑑 =
𝑘𝑘𝑑𝑑𝑆𝑆𝐿𝐿
𝑘𝑘𝑟𝑟𝑘𝑘𝑎𝑎

1 − 𝑒𝑒−𝑘𝑘𝑎𝑎𝑘𝑘 −
𝑘𝑘𝑑𝑑𝑆𝑆𝐿𝐿

𝑘𝑘𝑟𝑟(𝑘𝑘𝑎𝑎 − 𝑘𝑘𝑟𝑟)
(𝑒𝑒−𝑘𝑘𝑟𝑟𝑘𝑘 − 𝑒𝑒−𝑘𝑘𝑎𝑎𝑘𝑘)

The deficit increases in a step-response fashion, steady-state
�𝑑𝑑 =

𝑘𝑘𝑑𝑑𝑆𝑆𝐿𝐿
𝑘𝑘𝑟𝑟𝑘𝑘𝑎𝑎



Dissolved Oxygen

The most commonly employed distributed load, used to simulate the 
effect of plants and sediment oxygen demand can be written as a mass 
balance.

0 = −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝑘𝑘𝑎𝑎𝑑𝑑 − 𝑃𝑃 + 𝑅𝑅 +
𝑆𝑆𝐵𝐵′

𝐻𝐻
where P and R = volumetric rates of plant photosynthesis and 
respiration, respectively (g m-3 d-1)

𝑆𝑆𝐵𝐵′ = areal rate of sediment oxygen demand (g m-2 d-1)
H = depth (m)



Dissolved Oxygen

The solution, if D = 0 at t = 0, would be 
�𝑑𝑑 =

−𝑃𝑃 + 𝑅𝑅 + (𝑆𝑆𝐵𝐵′ /𝐻𝐻)
𝑘𝑘𝑎𝑎

(1 − 𝑒𝑒−𝑘𝑘𝑎𝑎𝑘𝑘)

Thus the deficit increases in a step-response fashion, approaching a 
steady-state level �𝑑𝑑, where net deficit gain is balanced by reaeration 
losses:

�𝑑𝑑 =
−𝑃𝑃 + 𝑅𝑅 + (𝑆𝑆𝐵𝐵′ /𝐻𝐻)

𝑘𝑘𝑎𝑎



Total Streeter-Phelps Model

We’ve developed formulations for both point and non-point sources of 
BOD and oxygen. 



Total Streeter-Phelps Model
We’ve developed formulations for both point and non-point sources of BOD and 
oxygen. 
Oxygen deficit is:

𝐿𝐿 = 𝐿𝐿0𝑒𝑒−𝑘𝑘𝑟𝑟𝑘𝑘 +
𝑆𝑆𝐿𝐿
𝑘𝑘𝑟𝑟

(1 − 𝑒𝑒−𝑘𝑘𝑟𝑟𝑘𝑘)

Point Distributed

𝑑𝑑 = 𝑑𝑑0𝑒𝑒−𝑘𝑘𝑎𝑎𝑘𝑘 +
𝑘𝑘𝑑𝑑𝐿𝐿0
𝑘𝑘𝑎𝑎 − 𝑘𝑘𝑟𝑟

𝑒𝑒−𝑘𝑘𝑟𝑟𝑘𝑘 − 𝑒𝑒−𝑘𝑘𝑎𝑎𝑘𝑘 +
−𝑃𝑃 + 𝑅𝑅 + (𝑆𝑆𝐵𝐵′ /𝐻𝐻)

𝑘𝑘𝑎𝑎
(1 − 𝑒𝑒−𝑘𝑘𝑎𝑎𝑘𝑘)

Point deficit Point BOD Distributed deficit

+ 𝑘𝑘𝑑𝑑𝑆𝑆𝐿𝐿
𝑘𝑘𝑟𝑟𝑘𝑘𝑎𝑎

1 − 𝑒𝑒−𝑘𝑘𝑎𝑎𝑘𝑘 − 𝑘𝑘𝑑𝑑𝑆𝑆𝐿𝐿
𝑘𝑘𝑟𝑟(𝑘𝑘𝑎𝑎−𝑘𝑘𝑟𝑟)

(𝑒𝑒−𝑘𝑘𝑟𝑟𝑘𝑘 − 𝑒𝑒−𝑘𝑘𝑎𝑎𝑘𝑘)
Distributed BOD



Analytical Solutions

A mass balance for a diffuse source that contributes both flow and 
mass can be written as:

𝜕𝜕(𝐴𝐴𝑐𝑐𝑑𝑑)
𝜕𝜕𝑑𝑑

+
𝜕𝜕(𝑄𝑄𝑑𝑑)
𝜕𝜕𝑥𝑥

=
𝑑𝑑𝑄𝑄
𝑑𝑑𝑥𝑥

𝑑𝑑𝑑𝑑 − 𝑘𝑘𝐴𝐴𝑐𝑐𝑑𝑑

where Ac = cross-section area (m2)
c = concentration (mg L -1)
t = time (s)
Q = flow rate (m3 s-1) 
x = distance (m)
cd = concentration of the diffuse source (mg L-1)
k = first-order decay rate (s-1)



Analytical Solutions

At steady state this becomes:

0 = −
𝑑𝑑(𝑄𝑄𝑑𝑑)
𝑑𝑑𝑥𝑥

+
𝑑𝑑𝑄𝑄
𝑑𝑑𝑥𝑥

𝑑𝑑𝑑𝑑 − 𝑘𝑘𝐴𝐴𝑐𝑐𝑑𝑑

O’Conner developed both steady-state and time-variable solutions for 
dissolved solids (k = 0). O’ Conner idealized flow increases as an 
exponential function,

𝑄𝑄 = 𝑄𝑄0𝑒𝑒𝑞𝑞
′𝑥𝑥

where Q0 = flow at x = 0 (m3 d-1) and q’ = exponential rate of flow 
increase (m-1). This equation can be substituted above to yield:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

+ 𝑞𝑞′𝑑𝑑 = 𝑞𝑞′𝑑𝑑𝑑𝑑



Analytical Solutions
𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

+ 𝑞𝑞′𝑑𝑑 = 𝑞𝑞′𝑑𝑑𝑑𝑑
Applying the boundary condition c = c0 at x = 0, the obtained solution is:

𝑑𝑑 = 𝑑𝑑0𝑒𝑒−𝑞𝑞
′𝑥𝑥 + 𝑑𝑑𝑑𝑑(1 − 𝑒𝑒−𝑞𝑞′𝑥𝑥)



Analytical Solutions

The addition of a reaction term complicates the analysis because we 
must now consider how the diffuse flow affects the stream’s 
hydrogeometric parameters. We have to account for the flow additions 
impacting both velocity and cross-sectional area 



Analytical Solutions

To incorporate these effects into our model we employ a linear function to 
represent the flow increases,

𝑄𝑄 = 𝑄𝑄0 + 𝑞𝑞𝑥𝑥
where q = a constant parameterizing the rate of the linear increase (m2d-1). 
Substituting this into (0 = −𝑑𝑑(𝑄𝑄𝑐𝑐)

𝑑𝑑𝑥𝑥
+ 𝑑𝑑𝑄𝑄

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑 − 𝑘𝑘𝐴𝐴𝑐𝑐𝑑𝑑) gives: 

0 = −(𝑄𝑄0 + 𝑞𝑞𝑥𝑥)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

− 𝑞𝑞 + 𝑘𝑘𝐴𝐴𝑐𝑐 𝑑𝑑 + 𝑞𝑞𝑑𝑑𝑑𝑑



Analytical Solutions

0 = −(𝑄𝑄0 + 𝑞𝑞𝑥𝑥)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

− 𝑞𝑞 + 𝑘𝑘𝐴𝐴𝑐𝑐 𝑑𝑑 + 𝑞𝑞𝑑𝑑𝑑𝑑
This is a linear rise, which is reasonable (although exponential is possible as well). 
Since it is over short distances, the numerical approach described next will be using 
linearly increasing flow. 
A solution first to the extreme case :

𝑑𝑑 = 𝑑𝑑0
𝑈𝑈0

𝑈𝑈𝑜𝑜 + 𝑣𝑣𝑥𝑥

𝑘𝑘+𝑣𝑣
𝑣𝑣

+ 𝑑𝑑𝑑𝑑
𝑣𝑣

𝑣𝑣 + 𝑘𝑘
1 −

𝑈𝑈0
𝑈𝑈𝑜𝑜 + 𝑣𝑣𝑥𝑥

𝑘𝑘+𝑣𝑣
𝑣𝑣

where 
𝑣𝑣 =

𝑞𝑞
𝐴𝐴𝑐𝑐0

in which Ac0 = initial area (m2).



Analytical Solutions

Then for the steady-state case :

𝑑𝑑 = 𝑑𝑑0𝑒𝑒
− 𝑘𝑘
𝑈𝑈0
𝑥𝑥 + 𝑑𝑑𝑑𝑑

𝑣𝑣
𝑘𝑘

(1 − 𝑒𝑒−
𝑘𝑘
𝑈𝑈0
𝑥𝑥)

𝑈𝑈0
𝑈𝑈𝑜𝑜 + 𝑣𝑣𝑥𝑥

As can be seen the constant velocity result eventually goes to zero. In contrast 
the constant-area solution asymptotically approaches a constant concentration:

𝑑𝑑 = 𝑑𝑑𝑑𝑑
𝑣𝑣

𝑣𝑣+𝑘𝑘𝐴𝐴𝑐𝑐0



Analytical Solutions

Clearly the correct result for realistic cases lies between the two extremes. To 
quantify this intermediate case we assume that the Manning Equation provides 
an adequate representation of the momentum balance for the steady-flow in 
the channel

𝑄𝑄 =
𝐶𝐶0
𝑛𝑛
𝐴𝐴𝑐𝑐𝑅𝑅2/3𝑆𝑆𝑒𝑒

1/2

where C0 = constant (1: SI, 1.486: BG)
n = Manning’s roughness coefficient
R = channel’s hydraulic radius (m or ft)
P = wetted perimeter (m or ft)
Se = slope of the channel (m/m or ft/ft)



Analytical Solutions

Assuming metric units, we can solve Manning’s equation for
𝐴𝐴𝑐𝑐 = 𝛼𝛼𝑄𝑄𝛽𝛽

where 𝛽𝛽 = 3/5 and for the case of a wide, shallow rectangular channel,

𝛼𝛼 =
𝑛𝑛𝐵𝐵

2
3

𝑆𝑆0

3/5

where B = channel width. For this simple case, because 𝛼𝛼 is constant, a simple 
relationship between flow and area is established. 
The parameter 𝛽𝛽 specifies the relationship between area and velocity. Values of 
𝛽𝛽 vary from 0 to 1. 



Analytical Solutions



Analytical Solutions

We apply the original partial differential equation to express as a coupled pair of 
ordinary differential equations:

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

= 𝑈𝑈
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑑𝑑 +
𝑞𝑞
𝐴𝐴𝑐𝑐
𝑑𝑑𝑑𝑑 −

𝑞𝑞
𝐴𝐴𝑐𝑐
𝑑𝑑

The first equation describes the characteristic trajectory. The second equation 
shows how the pollutant changes temporally as it moves along the 
characteristic. 



Analytical Solutions

Substituting into previous equations yields:
𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

=
1
𝛼𝛼
𝑄𝑄0 + 𝑞𝑞𝑥𝑥 (1−𝛽𝛽)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑞𝑞(𝑑𝑑𝑑𝑑 − 𝑑𝑑)

𝛼𝛼 𝑄𝑄0 + 𝑞𝑞𝑥𝑥 (1−𝛽𝛽) − 𝑘𝑘𝑑𝑑

Applying appropriate initial conditions (t=0, x=0, Q=Q0)), 
we can solve

𝑥𝑥 =
𝛽𝛽𝑞𝑞
𝛼𝛼
𝑑𝑑 + 𝑄𝑄0

𝛽𝛽
1/𝛽𝛽

− 𝑄𝑄0
1
𝑞𝑞



Numerical Method

A computer-oriented numerical method is better suited 
for general application, beyond the limited application
of  the analytical approach. 

The following is similarly employed in QUAL 2E model. 
Equal-length computational elements represent reaches of uniform geometry 
river sections. Total diffuse flow Qd is established for each reach, each element 
receiving Qd/n flow. If each segment is ∆ x, then Qd and q are related by:

𝑄𝑄𝑒𝑒 =
𝑄𝑄𝑑𝑑
𝑛𝑛

= 𝑞𝑞∆𝑥𝑥

where Qe = incremental flow for each element (m3 d-1).



Numerical Method

𝑄𝑄𝑒𝑒 =
𝑄𝑄𝑑𝑑
𝑛𝑛

= 𝑞𝑞∆𝑥𝑥

where Qe = incremental flow for each element (m3 d-1).

Transport calculation is performed element-by-element,
starting at the element farthest upstream. First, simple flow balances are 
computed for the cell: e.g. in the first element:

𝑄𝑄1 = 𝑄𝑄0 + 𝑄𝑄𝑒𝑒
where Q1 = outflow from element 1.



Numerical Method

Next for a wide rectangular channel, the flow can 
be used to determine the element volume:

𝑉𝑉 = ∆𝑥𝑥𝐴𝐴𝑐𝑐 = ∆xα𝑄𝑄𝛽𝛽

The mass balance can be developed for example for 
BOD and oxygen. 

0 = 𝑄𝑄𝑖𝑖−1𝐿𝐿𝑖𝑖−1 − 𝑄𝑄𝑖𝑖𝐿𝐿𝑖𝑖 + 𝑄𝑄𝑒𝑒𝐿𝐿𝑑𝑑,𝑖𝑖 − 𝑘𝑘𝑟𝑟,𝑖𝑖𝑉𝑉𝑖𝑖𝐿𝐿𝑖𝑖

0 = 𝑄𝑄𝑖𝑖−1𝑜𝑜𝑖𝑖−1 − 𝑄𝑄𝑖𝑖𝑜𝑜𝑖𝑖 + 𝑄𝑄𝑒𝑒𝑜𝑜𝑑𝑑,𝑖𝑖 − 𝑘𝑘𝑑𝑑,𝑖𝑖𝑉𝑉𝑖𝑖𝐿𝐿𝑖𝑖 + 𝑘𝑘𝑎𝑎,𝑖𝑖𝑉𝑉𝑖𝑖 𝑜𝑜𝑠𝑠,𝑖𝑖 − 𝑜𝑜𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑉𝑉 − 𝑅𝑅𝑖𝑖𝑉𝑉 − 𝑆𝑆𝑏𝑏,𝑖𝑖
′ 𝐴𝐴𝑠𝑠

The balances can be solved in sequence



Numerical Method

The balances can be solved in sequence

𝐿𝐿𝑖𝑖 =
𝑄𝑄𝑖𝑖−1𝐿𝐿𝑖𝑖−1 + 𝑄𝑄𝑒𝑒𝐿𝐿𝑑𝑑,𝑖𝑖

𝑄𝑄𝑖𝑖 + 𝑘𝑘𝑟𝑟,𝑖𝑖𝑉𝑉𝑖𝑖

𝑜𝑜𝑖𝑖 =
𝑄𝑄𝑖𝑖−1𝑜𝑜𝑖𝑖−1 + 𝑄𝑄𝑒𝑒𝑜𝑜𝑑𝑑,𝑖𝑖 − 𝑘𝑘𝑑𝑑,𝑖𝑖𝑉𝑉𝑖𝑖𝐿𝐿𝑖𝑖 + 𝑘𝑘𝑎𝑎,𝑖𝑖𝑉𝑉𝑖𝑖𝑜𝑜𝑠𝑠,𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑉𝑉 − 𝑅𝑅𝑖𝑖𝑉𝑉 − 𝑆𝑆𝑏𝑏,𝑖𝑖

′ 𝐴𝐴𝑠𝑠
𝑄𝑄𝑖𝑖 + 𝑘𝑘𝑎𝑎,𝑖𝑖𝑉𝑉𝑖𝑖



Numerical Method

A numerical dispersion is manifested that is approximately :

𝐸𝐸𝑛𝑛 =
∆𝑥𝑥
2
𝑈𝑈

Real streams exhibit dispersion. Consequently the physical dispersion provides 
an upper bound on the spatial step:

∆𝑥𝑥 =
2𝐸𝐸
𝑈𝑈
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